Abstract
Contributed Talk - Splinter Stellar
Thursday, 24 September 2020, 14:41 (virtual room M)
The impact of Galactic evolution on binary interactions, as shown in hot subdwarf binaries.
Vos J., Bobrick A. and Vuckovic M.
Universität Potsdam, Lund University, University of Valparaiso
Wide hot subdwarf B (sdB) binaries with main-sequence companions are outcomes of stable mass transfer from evolved red giants. The orbits of these binaries show a strong correlation between their orbital periods and mass ratios. The origins of this correlation have, so far, been lacking a conclusive explanation. We have performed a small but statistically significant binary population synthesis study with the binary stellar evolution code MESA. We have used a standard model for binary mass loss and a standard Galactic metallicity history. We have achieved an excellent match to the observed period - mass ratio correlation without explicitly fine-tuning any parameters. Furthermore, our models produce a good match to the observed period - metallicity correlation. We demonstrate, for the first time, how the metallicity history of the Milky Way is imprinted in the properties of the observed post-mass transfer binaries. We show that Galactic chemical evolution is an important factor in binary population studies of interacting systems containing at least one evolved low-mass (Mi < 1.6 Msol) component. Finally, we provide an observationally supported model of mass transfer from low-mass red giants onto main-sequence stars.